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1. INTRODUCTION

Most of the work on active noise control is con"ned to free "eld and restricted spaces such
as ducts and enclosures [1, 2]. Recently, control of sound in an uncon"ned space has drawn
increased attention [3}7]. More recently, there has been a concentrated e!ort to develop
practical control systems for environmental noise reduction [8]. In reference [8], the
stability condition was given of the electronically controlled acoustic shadow (ECAS)
system, and a two-channel system is used initially to demonstrate the basic properties.
However, the basic properties of the two-channel plant do not seem to exist in the
multichannel plant, as shown in the matrix condition spectra; the six-channel ECAS system
has di!erent number of peaks from the three-channel system, although they were expected
to have the same positions of peaks according to the derived formula in reference [8]. This
gave considerable motivation to our present study on the robustness of multichannel ECAS
system.

It is found that the positions of peaks occur when the largest path di!erence between
the sources and detectors corresponds to multiples of one wavelength for the case of
three-four- and six- channel systems. This is con"rmed by numerical simulation and is
helpful to determine the robustness of control system.

2. ACOUSTIC ROBUSTNESS OF TWO-CHANNEL SYSTEM

The free"eld ECAS system is illustrated in Figure 1. It is a symmetric con"guration
of primary sources, secondary sources and sensors. For simplicity, the primary sources
are not shown in the "gure. The sound "eld radiated from a monopole source can be
written as

p"juo
0
q
exp(!jkr)

4nr
, (1)

where u is the angular frequency, o
0

is the density of the medium, q is the source strength,
k is the wave number 2n/j, j being the wavelength, and r is the distance from the source to
the "eld point. If Q is de"ned as strength term Q"juo

0
q/4n, which is the time derivative of

the source strength, then the transfer function C
mn

between the nth monopole source
(secondary source) and the mth target point (microphone) is given by C

mn
"e~+krmn/r

mn
. In
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Figure 1. ECAS geometry: j, secondary sources; d, sensors.
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the performance analysis of ECAS system, the condition number is used as the robustness
measurement, given by [8]

K"e
max

/e
min

, (2)

where e
max

and e
min

are the largest and smallest eigenvalues of the transfer function matrix
CHC respectively.

For the two-channel system which consists of sound sources 1 and 2 and sensors 1 and 2,
r
11
"r

22
, r

12
"r

21
, we can get the transfer function matrix

C"C
C

11
C

12
C

12
C

11
D"C

e~+kr11/r
11

e~+kr12/r
12

e~+kr12/r
12

e~+kr11/r
11
D (3)

and then

CHC"C
DC

11
D2#DC

12
D2 C*

11
C

12
#C

11
C*

12
C*

11
C

12
#C

11
C*

12
DC

11
D2#DC

12
D2 DOC

C
1

C
2

C
2

C
1
D , (4)

where both C
1
and C

2
are real, and the superscript H is the Hermitian transpose of a vector.

The eigenvalues of CHC are the roots of the characteristic equation det[CHC!eI]"0,
and I is the identity matrix of rank 2. Clearly, the eigenvalues e are, respectively, the sum
and di!erence between the diagonal and corner values of the matrix CHC, given by

e
1,2

"C
1
$C

2
"DC

11
D2#DC

12
D2$2 DC

11
C

12
D cos/ , (5, 6)

where /"kdr is the phase di!erence, which plays a role in determining the extreme value of
condition number. dr"r

12
!r

11
denotes the path di!erence between each source and the

microphone. It approximates to ab/2c, providing cA(b#a), where a, b and c have meanings
illustrated in Figure 1.
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From equations (5) and (6), condition number de"ned in equation (2) takes on a minimum
value, K

min
"1, when

cos/"0 i.e., dr"(2p!1)j/4, where p"1, 2,3,2. (7)

The transfer function matrix is said to be well-conditioned, resulting in the most robust
control system [9]. The positions of the valleys in the condition number can be obtained as

f
p
"c

0
/j"(p!1/2)c

0
(c/ab), where p"1, 2, 3,2. (8)

It shows that for good cancellation performance, the adaptive system should be operated
close to the valley frequencies, and a wide valley is needed. On the other hand, the condition
number takes the maximum, K

max
"[(r

12
/r

11
#1)/(r

12
/r

11
!1)]2, when

Dcos/D"1 i.e., dr"qj/2, where q"0, 1, 2, 3,2. (9)

The transfer function matrix is said to be ill-conditioned, resulting in the least robust
control system [9]. Similarly, the positions of the peaks in the condition number can be
found as

f
q
"c

0
/j"qc

0
(c/ab), where q"0, 1, 2, 3,2, (10)

which is the same as equation (75) in reference [8]. These peaks must be avoided to assure
system convergence.

From the point of view of the practical application, except to widen the stability region of
adaptive system, it draws more attention to determine the condition peaks in frequency
domain. Consider equations (5) and (6); the eigenvalues are bounded, the positions of
condition peaks depend more on the smaller eigenvalue rather than the larger one. This
property will be used in the following robustness analysis of multichannel system.

3. MULTICHANNEL CONDITION SPECTRA

In the case of three-channel system, i.e., sensors 1, 5 and 2 correspond to the sound
sources 1, 5 and 2 respectively (see Figure 1). The transfer function (3]3 matrix) can be
written as

CHC"C
C

1
C

2
C

3
C*

2
C

4
C*

2
C

3
C

2
C

1
D , (11)

where C
1
, C

3
and C

4
are real, and C

2
is complex, and their explicit expressions are given in

(A1)} (A4) in Appendix A. The eigenvalues can be obtained as

e
1
"C

1
!C

3
"DC

11
D2#DC

12
D2!2 DC

11
C

12
Dcos/ , (12)

e
2
"1

2
(C

1
#C

3
#C

4
!JD), e

3
"1

2
(C

1
#C

3
#C

4
#JD), (13, 14)

where D"(C
1
#C

3
!C

4
)2#8DC

2
D2. It can be easily seen from equations (12)} (14) that

e
1,2,3

'0 and e
2
(e

3
. From equations (13) and (A5) in Appendix A, the eigenvalue e

2
has its

minimum when DC
2
D is maximized, i.e., cos(//2)"1. However, from equation (12), the

eigenvalue e
1

is minimum when cos /"1. Therefore, half the number of condition peaks



Figure 2. Eigenvalue spectra of the three-channel system. * )* , e
min

; ** , e
1
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2
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will be lost by analyzing the eigenvalue e
2
. This is veri"ed by the numerical computation as

shown in Figure 2. Now the positions of peaks frequencies can be found from the equation

cos/"1 i.e., dr"qj, where q"0, 1, 2, 3,2 (15)

and one gets

f"c
0
/j"qc

0
(2c/ab), where q"0, 1, 2, 3,2. (16)

It shows that maxima in the condition spectra occur when the largest path di!erence
between the sources and detectors corresponds to the multiples of wavelengths. This is
di!erent from the case of two-channel system.

In the case of four-channel system, i.e., sensors 1, 2, 3 and 4 correspond to the sound
sources 1, 2, 3 and 4, respectively (see Figure 1). The transfer function (4]4 matrix) can be
written as

CHC"C
C

1
C

2
C

3
C

2
C

2
C

1
C

2
C

3
C

3
C

2
C

1
C

2
C

2
C

3
C

2
C

1
D , (17)

where C
1
, C

2
and C

3
are all real, and their explicit expressions are given in (A6)}(A8) in

Appendix A. Equation (17) is the circular or periodic Toeplitz matrix, and its eigenvalues
can be expressed in terms of exact algebraic (periodic) functions [10] as

e
n
"C

1
#2C

2
cos(nn/2)#C

3
cos(nn), n"1, 2, 3, 4, (18)

i.e., e
1
"C

1
!C

3
, e

2
"C

1
!2C

2
#C

3
, e

3
"e

1
and e

4
"C

1
#2C

2
#C

3
. Substituting

equations (A6)}(A9) into equation (18), we have

e
1
"e

3
"DC

11
D2#DC

13
D2!2 DC

11
C

13
Dcos/@ , (19)

e
2
"DC
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D2#4 DC

12
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D2!4( DC

11
C
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12
C

13
D )cos /#2 DC

11
C
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Dcos/@ , (20)

e
4
"DC
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D2#4 DC

12
D2#DC

13
D2#4( DC

11
C

12
D#DC

12
C

13
D )cos /#2 DC

11
C

13
Dcos/@ , (21)



Figure 3. Eigenvalue spectra of the four-channel system. * )* , e
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where the term cos/@ is contained in all eigenvalues. It is interesting to note that when
cos/@"1, eigenvalue e

1
(e
3
"e

1
) is at its minimum, and at the same time one of the

eigenvalues e
2
or e

4
has its minimum due to cos /"1 or!1, and their extreme values occur

alternatively in the frequency domain. This can be seen in Figure 3. Like the three-channel
system, it will lose half the number of condition peaks if only the eigenvalue e

2
or e

4
is

analyzed. So the positions of the peaks can be found from the equation

cos/@"1, i.e., dr@"qj, where q"0, 1, 2, 3,2. (22)

Combining dr@+ab/c, one gets

f"qc
0
(c/ab), where q"0, 1, 2,2, n , (23)

which is the same as equation (10) for the two-channel system. However, maxima in the
condition spectra occur when the largest path di!erence between the sources and detectors
(i.e., r

13
!r

11
) corresponds to the multiples of wavelengths.

In the case of six-channel system, sensors 1, 5, 2, 3, 6 and 4 correspond to the sound
sources 1, 5, 2, 3, 6 and 4 respectively (see Figure 1). The transfer function (6]6 matrix) can
be written in the partitioned matrix form

-------------------------------------CHC"
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D
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D
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1
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3
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C
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C
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2

C
1
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1

A
2

A
2

A
1
D , (24)

where

A
1
"C

C
1

C
2

C
3
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2

C
7
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2

C
3

C
2

C
1
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2
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C
4

C
5

C
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C
8
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C
6

C
5

C
4
D . (25, 26)
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All the elements except C
2

and C
5

in matrix CHC are real. Their explicit expressions are
given in equations (A10)} (A17) in Appendix A. When the submatrices A

1
are non-singular,

the determinant of CHC is given by [10]

det(CHC)"det(A
1
)]det(A

1
!A

2
A~1

1
A

2
) . (27)

In the case of eigenvalues, generally no exact formula can exist for a 5]5 or higher rank
matrix [11], except for the special ones. Fortunately, A

1
A

2
"A

2
A

1
basically holds except

at a few frequencies as shown in Figure 4, due to geometry cA(b#a). The expressions of
A

1
A

2
and A

2
A

1
and de"nition of c are given in Appendix A. Therefore, equation (27) yields

det(CHC )"det(A2
1
!A2

2
)"det(A

1
#A

2
)]det(A

1
!A

2
) . (28)

The eigenvalue solution (12)} (14) in the three-channel system can be used here. For the
matrix A

1
#A

2
, we have eigenvalues

e
1
"DC

11
D2#4 DC

12
D2#DC

13
D2!4( DC

11
C
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C

13
D)cos/#2 DC

11
C
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Dcos/@ , (29)
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1
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7
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8
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1
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e
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1
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3
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7
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4
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5
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8
)#JD

1
], (31)

where /@"kdr@"2/, D
1
"[(C

1
#C

3
!C

7
)#(C

4
#C

5
!C

8
)]2#8 DC

2
#C

5
D2. For the

matrix A
1
!A

2
, we have eigenvalues

e
4
"DC
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D2#DC

13
D2!2 DC
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C

13
Dcos/@ , (32)

e
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7
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4
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5
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8
)!JD

2
], (33)

e
6
"1

2
[(C

1
#C

3
#C

7
)!(C

4
#C

5
#C

8
)#JD

2
], (34)

where D
2
"[(C

1
#C

3
!C

7
)!(C

4
#C

5
!C

8
)]2#8 DC

2
!C

5
D2. Equations (29) and (30)

imply that e
2
(e

3
and similarly e

5
(e

6
from equations (32) and (33), so only the eigenvalues

analysis of e
1
, e

2
, e

4
and e

5
is needed for obtaining the condition peaks positions. Like the

eigenvalue analysis in the three- and four-channel systems, we will lose half the number of



Figure 5. Eigenvalue spectra of the six-channel system. * )* , e
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condition peaks if we only consider one of the eigenvalues e
1
, e

2
and e

5
as shown in Figure 5.

Thus, eigenvalue e
4

is chosen, and is at its minimum when cos/@"1. The peaks of
condition number occur at the frequencies

f"qc
0
(c/ab), where q"0, 1, 2,2, n . (35)

which is the same as the formulations for two- and four-channel systems. Again, maxima in
the condition spectra occur when the largest path di!erence between the sources and
detectors (i.e., r

13
!r

11
) corresponds to the multiples of wavelengths.

4. SIMULATIONS AND DISCUSSION

In this paper, a similar model as that in reference [8] is adopted. For the ECAS system
shown in Figure 1, the parameters are a"1m, b"1m, c"10m, and speed of sound
c
0
"343 m/s. Figures 2, 3 and 5 show the multichannel eigenvalues (related to the condition

number) versus frequency for the three-channel (1 layer of 3), four-channel (2 layers of 2) and
six-channel (2 layers of 3) systems respectively. e

min
represents the smallest one in the

eigenvalues of the multichannel transfer function matrix. Apart from the special case of
two-channel system, the positions of condition peaks can be obtained by analyzing the
eigenvalue in the form

e"DC
11

D2#DC
1n

D2!2 DC
11

C
1n

Dcos(kr
11
!kr

1n
) , (36)

where n"2, 3, 3 corresponds to the three- and four- and six-channel systems respectively.
This means that maxima in the condition spectra occur when the largest path di!erence
between the sources and sensors corresponds to the multiples of wavelengths.

To verify the e!ectiveness of the method described in the eigenvalue analysis of
six-channel system, all the eigenvalues from equations (29)} (34) are drawn in Figure 6, and
the numerical eigenvalue solutions to equation (24) by the use of MATLAB are also
depicted in that "gure. It can be seen that all the numerical eigenvalues collapse on the
eigenvalue spectra, so the relative error c given in Figure 4 does not a!ect the eigenvalue
solutions to equation (24) when using the exact formulas (29)} (34).



Figure 6. Comparison of eigenvalues of the six-channel system from equations (29)}(34) and equation (24)
respectively. ** , e

1
; } } } , e

2
; ) ) ) ) , e

3
; * )* )* , e

4
; * )-* )-* ; e

5
; ---- , e

6
; 0, numerical eigenvalues.

Figure 7(a). Multichannel system condition spectra. (a) ***, two channels; *** , four channels. (b)
***, three channels; *** , six channels.
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Finally, the multichannel condition spectra for two- and four- and three- and six-channel
systems are summarized in Figure 7(a) and 7(b). It indicates that: "rst, the eigenvalue
expressed in equation (36) is only applicable to determine the condition peaks positions;
second, other eigenvalues shown in Figures 2, 3 and 5 are responsible for the peaks width. It
also indicates that the peaks thicken as the channel number increases as mentioned in
reference [8].

5. CONCLUSION

This paper has given a detailed eigenvalue analysis for establishing robust control system.
It facilitates the determination of condition peaks. For moderate channel numbers, the
condition peaks occur when the largest path di!erence between the sources and sensors
corresponds to multiples of one wavelength. The simulation results are helpful to
understand the acoustic robustness and to predict the stability region in frequency domain.
The robustness analysis in this paper has potential application prospect for achieving
e!ective noise control.
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APPENDIX A

In the case of three-channel system, similar to the derivation of equation (4), the elements
of 3]3 matrix CHC are computed as follows:

C
1
"DC

11
D2#DC

51
D2#DC

21
D2 , (A1)

C
2
"C*

11
C

15
#C*

51
C

55
#C*

21
C

25
, (A2)
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C
3
"2 DC

11
C

12
Dcos/#DC

51
D2 , (A3)

C
4
"DC

55
D2#2 DC

15
D2 . (A4)

For the model shown in Figure 1, C
21
"C

12
, C

25
"C

15
, and the path di!erence

r
15
!r

11
+r

12
!r

15
"dr/2, providing cA(b#a). Then equation (A2) can be

approximated as

C
2
+(1/r

15
)22cos(//2)#(1/r

55
)2e~+kg , (A5)

where g"r
51

!r
55

is a small quantity and its e!ect on the extreme value of DC
2
D can be

ignored, compared to the "rst term on the right-hand side of equation (A5).
In the case of four-channel system, the elements of 4]4 matrix CHC are computed as

follows:

C
1
"DC

11
D2#2 DC

12
D2#DC

13
D2 , (A6)

C
2
"2 DC

11
C

12
Dcos /#2 DC

12
C

13
Dcos(/@!/) , (A7)

C
3
"2 DC

11
C

13
Dcos /@#2 DC

12
D2 , (A8)

where /@"kdr@"k (r
13
!r

11
), and it can be derived that dr@+(J2a)(J2b)/2c"ab/c. So

/@"2/ or dr@"2dr, and equation (A7) can be simpli"ed as

C
2
"2( DC

11
C

12
D#DC

12
C

13
D )cos/ . (A9)

In the case of six-channel system, the elements of 6]6 matrix CHC are computed as
follows:

C
1
"DC

11
D2#DC

51
D2#DC

12
D2#DC

13
D2#DC

53
D2#DC

14
D2 , (A10)

C
2
"C*

11
C

15
#C*

52
C

55
#C*

12
C

15
#C*

13
C

16
#C*

53
C

56
#C*

14
C

16
, (A11)

C
3
"DC

51
D2#DC

53
D2#2( DC

11
C

12
D#DC

12
C

13
D )cos/ , (A12)

C
4
"2( DC

11
C

13
D#DC

51
C

53
D )cos/@#2 DC

12
D2 , (A13)

C
5
"C*

11
C

16
#C*

51
C

56
#C*

12
C

16
#C*

13
C

15
#C*

53
C

55
#C*

14
C

15
, (A14)

C
6
"2( DC

11
C

12
D#DC

12
C

13
D )cos/#2 DC

51
C

53
Dcos/@ , (A15)

C
7
"2 DC

15
D2#DC

55
D2#2 DC

16
D2#DC

56
D2 , (A16)

C
8
"4( DC

15
C

16
D#2 DC

55
C

56
D )cos/ , (A17)

where the phase di!erence is denoted as k (r
13
!r

12
)+k(r

16
!r

15
)+k (r

56
!r

55
)+/ and

k(r
53
!r

51
)+k (r

13
!r

11
)+/@, providing cA(b#a). Also, C

12
"C

14
is used in the

derivation. From equations (25) and (26),

A
1
A

2
"C

a
1

a
2

a
3

a
4

a
5

a
4

a
3

a
2

a
1
D , A

2
A

1
"C

a
1

a*
4

a
3

a*
2

a
5

a*
2

a
3

a*
4

a
1
D , (A18, A19)
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where

a
1
"C

1
C

4
#C

2
C*

5
#C

3
C

6
, a

2
"C

1
C

5
#C

2
C

8
#C

3
C

5
, (A20, A21)

a
3
"C

1
C

6
#C

2
C*

5
#C

3
C

4
, a

4
"C*

2
C

4
#C*

5
C

7
#C*

2
C

6
, (A22, A23)

a
5
"2C*

2
C

5
#C

7
C

8
. (A24)

Clearly, A
1
A

2
+A

2
A

1
holds only if a

2
+a*

4
. Let c"(a

2
!a*

4
)/a

2
, its real and imaginary

parts, as a function of frequency, are drawn in Figure 4. It demonstrates that a
2
+a*

4
resulting in A

1
A

2
+A

2
A

1
, except at a few frequencies.
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